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Definition 1 (Intersection graph). Let M be a family of sets. Then the intersection graph of M is IG(M) :=
(M, {{m,m′} : m ∩m′ 6= ∅,m,m′ ∈M}).
The class of all intersection graphs of a family of families is IG(M) := {IG(M) : m ∈M}.

Definition 2 (Classes INT, CA, CIRCLE, PER, FUN, OUTER-STRING, SEG, CONV, Phom, STRING,
PC, IFA).

• INT= IG(intervals on a line)

• CA= IG(arcs on a circle)

• CIRCLE= IG(chords of a circle)

• PER= IG(segments between two parallel lines)

• FUN= IG(graphs of continuous functions)

• OUTER-STRING= IG(curves in a plane with their one endpoint on a common line)

• SEG= IG(segments in the plane)

• CONV= IG(convex sets in the plane)

• Phom = IG(homothetic copies of a polygon P)

• STRING== IG(curves in the plane)

• PC== IG(polygons inscribed on the circle)

• IFA= IG(inverval filaments of a line)

Theorem 1. PC⊂IFA

Proof. Take a k-polygon and convert it into a filament with k half-circles, where the touching points are the
images of the polygon’s vertices. �

Definition 3 (Chordal graph). G is chordal, if every cycle of length at least four has a chord.

Definition 4 (Simplicial vertex). u ∈ V (G) is simplicial, if G[N(u)] is a clique.

Lemma 1 (Vertex cuts in chordal graphs). Every inclusion-wise maximal vertex cut in a chordal graph
induces a clique.

Proof. By contradiction: take such cut A so that G−A is disconnected and let there exist x 6= y ∈ A : xy 6∈ E.
Then there are components C1, . . . , Cn of G−A.

There must exist u1 ∈ C1 : xu1 ∈ E, u2 ∈ C2 : xu2 ∈ E, v1 ∈ C1 : yv1 ∈ E, v2 ∈ C2 : yv2 ∈ E. By
connectedness of the components, there exist paths u1 → v1, u2 → v2 - take the shortest ones for P1, P2.
We get a cycle in G by x, u1, P1, v1, y, v2, P

−1
2 , u2, x - take the shortest cycle, which has no chords (no edge

between components, in components by the shortest path) and it is an induced cycle of length at least 4. �

Lemma 2 (Chordal graphs and simplicial vertices). If G is chordal, then it is either isomorphic to a clique,
or it contains two nonadjacent simplicial vertices.

Proof. By induction on n: for n = 1, 2 or G complete - simple. Induction step: G is not complete, hence
there exists a vertex cut. Let A be a minimal vertex cut and C1, . . . , Ck the components. Take G1 =
G[A∪C1], G2 = [A∪C2∪ . . .∪Ck]. Both are chordal on less vertices, and hence they have simplicial vertices.

Both G1 and G2 have two simplicial vertices, one of which is u ∈ C1 and G2 has a simplicial vertex
v 6∈ A. Therefore uv 6∈ E(G), and NG(u) = NG1

(u), NG(v) = NG2
(v), and we have two nonadjacent

simplicial vertices in G �
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Definition 5 (Perfect elimination scheme). A graph G has a perfect elimination scheme if it has a linear
order of its vertices v1, . . . , vn such that ∀i ∈ [n] : vi is simplicial in G[{v1, . . . , vi}].

Theorem 2 (Chordal graphs and PES). Every chordal graph has a perfect elimination scheme.

Proof. By induction on n. For n = 1, this is trivial (only one order exists).
For n > 1, G has a simplicial vertex, which we take as the last one, and get the rest of PES by the induction
hypothesis. �

Definition 6 (Perfect graph). A graph is perfect, if for every induced subgraph, its clique number is the
same as its chromatic number.

Theorem 3 (Chordal graphs are perfect). Chordal graphs are perfect.

Proof. Greedily coloring (First Fit) by PES using the smallest color - if we use k-th color, there must be a
k-clique. �

Definition 7 (Clique-tree decomposition). Given G, let Q1, . . . , Ql be all maximal cliques (with respect to
inclusion). A clique-tree decomposition is a tree T = ({Qi : i ∈ [l]}, E), such that ∀v ∈ V (G) : T [{Qi : v ∈
Qi}] is connected.

Theorem 4 (Alternative characteristics of chordal graphs). The following are equivalent:

1. G is chordal

2. G has a PES

3. G allows a clique-tree decomposition

4. G is an intersection graph of subtrees of some tree

Proof. 1⇒ 2 by a previous theorem.
3 ⇒ 4: Take T a clique-tree decomposition. For a vertex u there is a subtree Tu := T [{Qi : u ∈ Qi}].

Apparently Tu ∩ Tv ⇔ uv ∈ E(G). uv ∈ E ⇔ ∃Qi : u, v ∈ Qi ⇔ Qi ∈ Tu ∩ Tv ⇔ Tu ∩ Tv 6= ∅
2 ⇒ 3: Given a PES, we construct a clique-tree decomposition by induction. Take a v1, . . . , vn−1 and

take a Tn−1 its clique-tree decomposition of G \ {vn}.
Now take Q = N(vn). If Q is a maximal clique in Gn−1, then just add vn there. Otherwise, let Q′ ⊃ Q

be a maximal clique, and attach Q ∪ {vn} to Q′.
4 ⇒ 1: Given a tree T , we will show that there may not exist an induced cycle of length at least 4.

Suppose there exists a cycle c1, . . . , ck. Then the subtrees T1, T2 must have a nonempty intersection, the
same for T2, T3 and Tk, T1. At the same time, there must be an empty intersection between T1, T3 and T2, Tk.
Hence, the trees T2, Tk live in different connected components of G − T1. Therefore, T3 up to Tk−1 must
live in the same connected components. However, then Tk has to live in G−

⋃
i<k Ti and intersect T1 at the

same time, which is not possible, as the graph is disconnected by then. �

Definition 8 (Lexicographic BFS ordering). A lexicographic BFS ordering of a graph Gis a left-to-right
ordering of its vertices v1, . . . , vn such that for any vi, vj : i < j, if there is a vertex w ∈ {v1, . . . , vi−1}
adjacent to exactly one of vi, vj , then the leftmost such w is adjacent to vi.

Algorithm 1 (LexBFS). Q - a queue of lists of vertices (ideally a linked list)
Q := a single list containing w Repeat until Q 6= ∅ :

1. choose a vertex w from the first list in Q and remove it from the list.

2. for any list L in Q containing a neighbour of w : split L into two lists L+, L−, where L+ = L ∩N(w)
and L− = L \ L+.

3. insert L+, L− into Q to the position of L (unless one of them is empty)

4. output w as the next vertex in LexBFS ordering
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Lemma 3 (LexBFS property). Suppose v1, . . . , vn is a LexBFS ordering of G. Suppose va, vb, vc ∈ V such
that a < b < c, vavc ∈ E, vavb 6∈ E. Then, there exists d < a such that vdvb ∈ E, vdvc 6∈ E.

Proof. Follows from the definition, as otherwise vc would have a higher priority over vb. �

Proposition 1 (LexBFS ordering of a chordal graph). If G is chordal, then any LexBFS ordering of G is a
PES.

Proof. Let G be chordal, let v1, . . . , vn be its LexBFS ordering and suppose its not a PES.
Choose a < b < c such that vavb 6∈ E, vbvc, vavc ∈ E so that a is as small as possible. From the previous

lemma, there exists b2 < a such that vb2vb ∈ E, vb2vc 6∈ E - take the left-most possible. Then vb2va 6∈ E, or a
C4 would exist. Then we have the triple b2, a, b so from the lemma, we get a2 such that va2va ∈ E, va2vb2 6∈ E.

This may be repeated ad infinitum, which is a contradiction with finiteness of the graph. �

Lemma 4 (Not-PES condition). If v1, . . . , vn is not a PES, then there exists a triple va, vb, vc : vavb 6∈
E, vavc ∈ E, vbvc ∈ E with vb being the right-most neighbour of vc to the left of vc.

Proof. Choose va, vb, vc such that vavc ∈ E, vavb 6∈ E so that b − c is smallest possible. Claim: vb must be
the rightmost left neighbour of vc.

If not, let vb′ be the rightmost left neighbour. Then, there exists a better structure for a, b, c given by
a, b, b′. �

Algorithm 2 (Linear-time chordality checking). Each vertex v ∈ V has a list TODO(v), initially they are
all empty For k = n to 1:

1. Let vj be the rightmost left neighbour of vk, add all the other left neighbours of vk to TODO(vj)

2. Make a mark on all left neighbours of vk

3. Go through TODO(vk) and check if they are marked (if not, fail)

4. Remove the marks.

return true

Lemma 5 (Algo time complexity for linear-time chordality checking). The algorithm takes time O(m+n).

Proof. For a given k, 1 takes O(deg(vk)).
2 takes O(deg(vk))
3 takes O(|TODO(vk)|)
4 takes O(deg(vk))
When summed together, the lengths of todo lists are exactly |E|, as every edge means a single addition into
a todo list. �

Definition 9 (Interval, cyclic interval). For a sequence s1, . . . , st, a set S ⊂ {s1, . . . st} is an interval, if
S = {sk : k ∈ {i, i+ 1, . . . , j − 1, j}} for some i, j.
A set S is a cyclic interval, if it is an interval or {s1 . . . , sn} \ S is an interval.

Theorem 5 (INT iff path-clique). G is an interval graph if and only if the maximal cliques of G can be
ordered into a sequence Q1, . . . , Qt such that for every vertex x ∈ V , the cliques containing x form an interval
in (Qi).

Proof. From the sequence, we get the interval representation by taking intervals corresponding to the indices
of the cliques.

If G is an interval graph, we take every maximal clique in the representation and take a “cut” through
the intervals. All cliques containing x form an interval by the fact that they all lie on an interval representing
x. �

Proposition 2 (Number of maximal cliques in a chordal graph). Let G = (V,E) be a chordal graph. Then,
G has at most n maximal cliques and their list can be completed in time O(m+ n).
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Proof. Let v1, . . . , vn be a PES. Define NL[x] = {x}∪{left neighbours ofx}. By the definition of PES, NL[x]
is a clique. Moreover, any maximal clique is in the form of NL[x] for some vertex x (there exists a right-most
vertex in the PES). Hence there are at most n maximal cliques.

In time O(m+ n), it is possible to compute all the sets NL[x] and the remove from the list all such sets
which are not maximal. �

Definition 10 (Testing of Intervals, Testing of Cyclic Intervals). Testing of Intervals: IN:
number t, sets S1, . . . , Sn ⊆ [t]
Question: is there a permutation π ∈ St : Si are intervals for all i on the permutation?

Testing of Intervals: IN: number t, sets S1, . . . , Sn ⊆ [t]
Question: is there a permutation π ∈ St : Si are cyclic intervals for all i on the permutation?

Observation (TCI and TI). TI can be reduced to TCI by taking the input t, S1, . . . , Sn for TI and getting
the answer for TCI with input t+ 1, S1, . . . , Sn.

Definition 11 (Cyclic shift, cyclic equivalence, cyclic permutation). A cyclic shift is an operation trans-
forming π1, . . . , πt into πt, π1, . . . , πt−1.

Two permutations are cyclically equivalent, if one can be transformed to the other by a sequence of cyclic
shifts.

A cyclic permutation is an equivalence class of cyclic equivalences.

Definition 12 (PQ-tree). A PQ-tree T is a tree, whose leaves are numbered 1, 2 . . . , t for some t and whose
internal nodes have one of two types: P or Q, and each internal node has a prescribed cyclic permutation of
its incident edges.

Then, we define π(T ) as the cyclic permutation of [t] induced by the leaves of T .
A PQ-tree T ′ is said to be equivalent to the PQ-tree T , if it can be obtained from T by a sequence of

operation of two types:

1. change the cyclic permutation of edges incident to a P-node to any other cyclic permutation

2. replace the cyclic permutation ef edges incident to a Q-node with its mirror image

Then we define P(T ) := {π(T ′) : T ′ is equivalent to T}.

Theorem 6 (Testing of cyclic intervals). Let (t, S1, . . . , Sn) be an instance of TCI. If the instance has a
solution, then there exists a PQ-tree T whose P(T ) is equal to the set of solutions of the instance. Moreover,
the tree T can be found in time polynomial in t+

∑
|Si|.

Proof. By induction on n. For n = 0, the tree has a single P node. For n = 1, the tree consists of two P
nodes, one of which has all the leaves which lie in S1 and the other has the remaining leaves. Let n ≥ 2 and
suppose we have a PQ-tree T− representing the solutions of the TCI instance (t, S1, . . . , Sn−1). Let S = Sn.

We will say a subtree of T− is full, if all of its leaves belong to S, empty if none of its leaves belong to S
and mixed otherwise.

An edge e of T− is mixed if both components of T− − e are mixed. Note that if e, e′ are mixed, then all
edges on the path from e to e′ are mixed as well.

If there is a vertex x of T ′ adjacent to more than two mixed edges, then no cyclic permutation on P(T )
has S as a cyclic interval and therefore the TCI instance has no solution. Otherwise suppose the mixed
edges form a path P = e1, . . . , ek. Reorder the edges adjacent to P in order to obtain T ′ equivalent to T−

in which all the empty subtrees are above the path P and all the full ones are below. If this is impossible,
then there is no solution.

Then for every P-node on P , we change the P-node into a Q-node with four neighbors - two from the
path, and two more P connected to the that the “above” subtrees and the “below” subtrees.

After that, there are only Q-nodes on P , so we contract the path into a single Q-node. The resulting tree
represents all the solutions of the instance. (In case |P | = 0, we just convert and contract if necessary.) �

Definition 13 (Comparability graphs). G is a comparability graph if and only if there exists a partial order
≤ of V , such that if xy ∈ E(G), then x ≤ y ∨ y ≤ x.
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Proposition 3 (COMP are perfect). Comparability graphs are perfect.

Proof. For a poset, we have the Dilworth (and Mirsky) theorem: minimum number of chains covering the
poset is the maximum size of an independent set, and the minimum number of antichains covering the poset
is the maximum size of a clique. As an antichain is an independent set, we have that the maximum size of
the clique is the minimum number of independent sets to cover the poset, hence we get perfectness. �

Theorem 7 (FUN=CO-COMP). FUN=CO-COMP

Proof. FUN⊆CO-COMP: There is an induced poset on ∀x ∈ [0, 1] : f(x) > g(x). If this inequality does not
hold, then there exists x0 : f(x0) = g(x0), and therefore there must be an edge and vice versa.

CO-COMP⊆FUN: Given a partial order P on V , we construct functions fv on [0, 1]. Take k linear
orders Li such that P = ∩Li. Then we define fv(x) such that we take k vertical lines and on the i-th line,
fv( i−1

k−1 ) = |{u ∈ V : u < v}| and define the curves to be linear. This yields a FUN graph. �

Theorem 8 (PER=COMP∩CO-COMP). PER=COMP∩CO-COMP

Proof. PER⊆FUN=CO-COMP.
Next, we show PER=CO-PER. Take a permutation graph G of π. Then, take a graph of the reverse

permutation σ(i) = π(n − i + 1). If i > j, then π(i) > π(j) ⇒ σ(i) < σ(j) and π(i) < π(j) ⇒ σ(i) > σ(j),
hence we get the complement of G.

Therefore CO-PER⊂CO-FUN=COMP.
Now, COMP∩CO-COMP⊆PER. Let G ∈COMP∩CO-COMP – we have a transitive orientations F1 of

E and F2 of
(
V
2

)
\ E. F1 ∪ F2 is a linear order: antisymmetry and antireflexivity easy, transitivity: cases

with uv in F1, vw in F2.
Also F−11 ∪ F2 is a linear order, as F−11 is a transitive orientation. Take two vertical lines y = 0, y = 1,

and linear functions fv(0) = |{u : (u, v) ∈ F1 ∪ F2}|, fv(1) = |{u : (u, v) ∈ F−11 ∪ F2}| �

Theorem 9 (INT=CHOR∩CO-COMP). INT=CHOR∩CO-COMP

Proof. INT⊂CHOR, as every subpath on a path is a subtree of a tree. INT⊂CO-COMP, as we take the
poset on vertices, where u < v if and only if I(u) is to the left of I(v).

The other direction follows from the following theorem. �

Proposition 4 (Characterisation of interval graphs). The following are equivalent:

1. G ∈INT

2. G ∈ IG(subpaths of paths)

3. G has a clique-path decomposition

4. G ∈CHOR∩CO-COMP

Proof. 1⇒ 4 : easily
2⇒ 1 : easily
3⇒ 2 : easily
4 ⇒ 3 : Let Q1, . . . , Qn be all maximal cliques with respect to inclusion. The complement of G is also

transitively oriented by relation P . Define Qi < Qj ⇔ ∃u ∈ Qi,∃v ∈ Qj : (u, v) ∈ P . — TODO
�

Proposition 5 (CHOR⊆ PC). CHOR⊆ PC

Proof. Given a chordal G, there exists a tree T and their subtrees induces by the vertices. Draw the tree
and have all sub-trees have the leaves in the leaves of T . Then, draw a circle around T and build a k-agon
Mu with vertices in Tu ∩ C.

If Tu ∩ Tv 6= ∅, then there exists a vertex which is in both, and therefore the intersection of the two
polygons is nonempty.

On the other hand, if Tu ∩ Tv = ∅, then there exists an edge, which separates the two subtrees, hence
there exists a curve in C which separates the two polygons. �
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Definition 14 (G-mixed). Let G be a class of graphs closed on induced subgraphs. Then G ∈ G−mixed
if and only if we can partition E(G) = E1 t E2 and transitively orient E2 such that (V (G), E1) ∈ G and

∀x, y, z : (x, y) ∈
−→
E2 ∧ yz ∈ E1 ⇒ xy ∈ E1.

Theorem 10. If Weighted Clique is in P for G, then Clique is in P for G-mixed.

Theorem 11 (CO-IFA=(CO-INT)-mixed). CO-IFA=(CO-INT)-mixed

Proof. CO-IFA⊆(CO-INT)-mixed: G ∈IFA → G ∈CO-IFA. There will be two types of edges: one above the
other, and two next to each other – the first type will be E2, the second E1. E2 gives a natural orientation
and E1 is a complement of an interval graph.

(CO-INT)-mixed⊆CO-IFA: Get G = (V,E1 t E2) : (V,E1) ∈CO-INT - we get (V,E1) ∈ INT, so we get
intervals Iv for v ∈ V . If Ix ⊆ Iy, then xy 6∈ E1. If Ix is to the left of Iy, then xy ∈ E1. If they intersect
and the leftmost point of Ix is more left than the leftmost point of Iy and the other cases have not occurred,
then xy 6∈ E1.

However, it may happen that xy 6∈ E2 and they have nonempty intersection and Ix 6⊆ Iy 6⊆ Ix. But then,
it’s always possible to change the intervals to xy ∈ E2 ⇒ Ix ⊆ Iy. Another issue: Ix ⊆ Iy but xy 6∈ E2 and
hence xy ∈ E. This can be fixed by making the filament higher. �

Remark (Clique, MIS, WIS, WClique, Coloring on INT). Clique, MIS, WIS, WClique and Coloring are in
P for INT

Remark (Clique on COMP). Clique is the largest chain in the poset – partition the poset - take minimal
elements and cut them off.

Remark (Independent Set on COMP). By Dilworth theorem, the size of the largest antichain in the poset
is the smallest k such that the poset can be partitioned in k chains.

G can be partitioned into k vertex-disjoint paths if and only if
−→
G has a set of n−k edges such that every

vertex has at most one outgoing and at most one ingoing edge in S, which happens if and only if
−→
G has a

matching of size n− k. Then
−→
G is a bipartite graph on vertices vin, vout, where x < y ⇒ (xout, yin) ∈ E.

By König’s theorem, the number of edges in maximum matching equals the number of vertices in minimal
vertex cover and given a vertex cover of size n − k, then A := {x ∈ P :neither xin, xout are in C} is an
antichain: if there was a pair of comparable vertices, then one of them woiuld have to be in the cover.

Remark (Clique on IFA). Largest clique in IFA is a largest IS in CO-COMP.

Definition 15 (Cops-and-robber game). Given a connected undirected graph G, c(G) is the minimal number
of cops necessary to catch a robber on a graph in finite time.

For a class A, c(A) = maxG∈A c(G).

Proposition 6 (Some cop number values). c(PATHS) = 1
c(CYCLES) = 2
c(TREES) = 1
c(INT) = 1
c(CHOR) = 1

Theorem 12 (Cop number of IFA). c(IFA) = 2.

Proof. Two policemen: one is a hunter, the other is a guard. The guard stands over all the filaments in
which the robber is. The hunter walks on the upper envelope of the other filaments and walks to the right
until he either catches the robber or the robber’s filament is below the hunter - then the two switch their
roles. �

Definition 16 (Constrained OUTER-STRING). A Constrained OUTER-STRING graph is an outerstring
graph with additional ordering of the endpoints of vertices on the common line.

Theorem 13 (Complement of Ck is not constrained OUTER-STRING). The complement of a k-cycle (with
k ≥ 4) and the ordering 1 . . . , n along the cycle is not a constrained OUTER-STRING graph.
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Proof. C4 = C4 - simple. For Cn, n ≥ 5 : Let it be representable, and therefore it has a finite number of
intersections. Take the representation with the least amount of intersections. Take a curve number 1, which
we shorten by their last intersection point, from which we lose an edge in the graph. At least one of the
resulting is a complement of a smaller cycle, which is a contradiction with the induction hypothesis. �

Theorem 14 (Hasse and OUTER-STRING). For G which is K3-free: G is a Hasse diagram if and only if
G is outer-string.

Proof. If G ∈ OUTER-STRING - then we take the order based on the points touching the baseline, which is
an acyclic orientation. Assume there exists a cycle in the complement which cannot exist in Hasse diagrams
- there exists an induced cycle, however its complement may not be represented as an outerstring.

The other inclusion: G is Hasse - there exists an acyclic orientation, we take the topological order and
using induction on the highest point, we get an outer-string representation. �

Remark (Independent Set on IFA). Define Fi : Ii → [0,+∞) and so on. Assume if Fi < Fj(Ii ⊆ Ij ,∀x ∈
Ii : Fi(x) < Fj(x)), then i < j.

Define IS(j) :=the size of the largest independent set under Fj .
For i = 1 to n+ 1 (assume all of the filaments are under Fn+1): take G induced by intervals for Fi under

Fi and find weighted independent set on the interval graph with weights wj = IS(j) + 1 for Ij under the
interval graph and this induces the result.

Return IS(n+ 1) = α(G).

Theorem 15 (Circle graphs are χ-bounded). Circle graphs are χ-bounded.

Proof. Take two special configurations: Kj and Qk,l, where the second is an indepedent set of size l under
the complete graph on k vertices. Define mj,k,l := the larges possible chromatic number of a graph with a
representation without both Kj and Qk,l. Want: mj,k,l <∞.

Induction on k : mj,0,l is bounded – let G have a circle representation without both Kj and Qk,l. Greedily
find a sequence of chords P1, . . . , Pi, where Pa+1 is completely to the right of Pa and whose right endpoints
are as much to the left as possible. Surely i < l. Take Ga := graph induced by the chords whose left endpoint
is to the left of the right endpoint of Pa, but not to the left of the right endpoint of Pa−1.

Note that the union of the vertices of Gi is V (G).
Every Ga is a co-comparability graph, and therefore is perfect (COMP are perfect and perfect graphs

are closed on complement), and therefore we may color it using j colors as it does not contain Kj . Hence
we may color G using lj colors and mj,0,l ≤ lj.

For k ≥ 1 : we will show mj,k,l ≤ mj,k−1,2l+1. Take a G with representation without forbidden Kj , Qk,l

and let x be a vertex represented by a chord, whose left endpoint is at most to the left. Define Ga as a
subgraph of G induced by vertices in distance a from x (WLOG G is connected). There exists an edge
between Ga and Gb iff |a− b| ≤ 1. Every vertex in Ga for a ≥ 1 has a neighbour in Ga−1.

We will show that for every a, Ga does not contain Kj nor Qk−1,2l+1. By contradiction: Let Ga contain
Qk−1,2l+1, and let y be its middle vertex (of the 2l + 1 stable set). Let P = x, x1, x2, . . . , xa−1, y be the
shortest path from x to y in G. Surely xi ∈ Gi. xi must lead from the midst of y out of the Qk−1,2l+1

configuration, which yields Qk,l.
Therefore ∀a : Ga can be colored by mj,k−1,2l+1 colors, and we may use it to color G0,∪G2 ∪ . . . by

mj,k−1,2l+1 and G1 ∪G3 ∪ . . . by another set of mj,k−1,2l+1 colors, therefore we may color G by 2mj,k−1,2l+1

colors. �

Theorem 16 (SEG is not χ-bounded). SEG graphs are not χ-bounded. (Precisely: there exists a triangle-
free SEG graph with an arbitrarily large chromatic number.)

Proof. Define Si as a graph, for which there exists a probe, that contains i colours for every valid coloring
of Si.

Inductively: S1: a single line segment. Si−1 → Si : take the root of every probe, add a copy C of Si and
for each of the copies, for every probe, create a new segment cutting across the probe and split the probe in
two, one containing the original probe’s vertices and the other containing the new vertex (only). �
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Definition 17 (AT-graph, strongly/weakly realizable). An AT-graph is a tuple ((V,E), R) for R ⊂
(
E
2

)
.

An AT-graph is strongly realizable if there exists a planar drawing D of (V,E) such that two edges e, f
intersect if and only if {e, f} ∈ R.
An AT-graph is weakly realizable if there exists a planar drawing D of (V,E) such that if two edges e, f
intersect, then {e, f} ∈ R.

Lemma 6 (AT-graph and the amount of intersections). Let ((V,E), R) be an AT-graph and let D be its
weak realisation with the minimum number of intersections. Then if D(e) intersects k edgs, then there are
at most 2k − 1 intersections on D(e).

Proof. Let there be an edge e with at least 2k intersection points which intersects edges e1, . . . , ek. We direct
the edge and for every interval between two intersection points (and the endpoints), we create a vector of
length k with its i-coordinate being the number of intersections with ei so far mod 2. There are 2k + 1
generated vectors and 2k different vectors, so there are two vectors with the same value. In the interval
between the two intervals with the same vectors, there will be an even number of intersections with every
edge ei.

Let ej be an edge with 2h > 0 intersection points. Then create an area close to the interval on e. Take
all edge drawings exiting the right side of the area and then returning to it, use circle inversion on them and
then use the axis symmetry with respect to the edge-drawing. This doesn’t create any more intersection
points and loses h of them. �

Corollary 1. Every weakly realisable AT-graph with n edges has a representation with at most n
2 (2n − 1)

intersections.

Definition 18. Let G be a graph, Γ ⊆ V × V − V 2 : abΓcd⇔ ((a = c ∧ bd 6∈ E) ∨ (b = d ∧ ac 6∈ E)) ∧ ab ∈
E ∧ cd ∈ E. Then by Γ∗ we denote the transitive closure. We call any path on the equivalence a desire path
(“pěšina”). Let M ⊆ V × V . We say that M is

• sensitive, if aMb ∧ abΓcd⇒ cMd

• transitive, if aMb, bMc⇒ aMc

• complete, if it is sensitive and transitive

• well-behaved, if aMb⇒ ab ∈ E.

By 〈M〉S we denote the sensitive closure, 〈M〉T for the transitive closure and 〈M〉 for the complete closure.

Lemma 7 (Lemma 1). If 〈M〉S is well-behaved, then 〈M〉 = 〈〈M〉S〉T .

Proof. As 〈M〉S is well-behaved, it gives an orientation only to edges. It suffices to show that N = 〈〈M〉S〉T
is sensitive. Assume it is not: there exists an edge uv ∈ N, uw 6∈ N, uw ∈ E, vw 6∈ E. This must have been
created by the transitive closure, hence there exists a sequence of directed edges from u to v and at some
point, there is a fork with one of the edges in 〈M〉S and by sensitivity, uw must be in 〈M〉S as well. �

Lemma 8 (Lemma 2). If 〈xy〉S is anti-symmetric, then 〈xy〉S is transitive (and therefore complete).

Proof. By contradiction: let ab, bc ∈ 〈xy〉S , ac 6∈ 〈xy〉S such that the desire path from ab to bc is the shortest
possible. Then we take the last uv such that v 6= c. Then v 6= b, as bc is an edge and this would violate the
definition of Γ. Also, u 6= a, as then ac ∈ 〈xy〉S .

Claim: ∀ui between u and c, there exists an edge aui. If not, then there would be ac ∈ 〈xy〉S , as
uic ∈ 〈xy〉S . This also implies aui ∈ 〈xy〉S and av 6∈ 〈xy〉S . This yields au, uv an intransitive triple with a
shorter desire path. �

Lemma 9 (Lemma 3). If M is complete and well-behaved, 〈xy〉 is well-behaved, xy 6∈ M,yx 6∈ M , then
〈M ∪ {xy}〉 is well-behaved.
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Proof. If M ∪ 〈xy〉S is sensitive and well-behaved, then from Lemma 1: 〈M ∪ 〈xy〉S〉 = 〈M ∪ 〈xy〉S〉T . By
contradiction: let U := 〈xy〉S and M ∪ U is not well-behaved. As it is not well-behaved, there exists an
oriented cycle alternating M,U,M,U, . . .. We take the shortest such cycle, if there are more, we take the
cycle with the shortest desire path from start to finish (the last edge that isn’t incident with the first edge).
All of the cycle’s diagonals must be edges, but none are in M ∪ U , else we would get a shorter cycle.

Take the first yz such that z 6= b on the desire path from ab to cd (start to finish). We make five
observations:

1) aic ∈ E, where ai are between a and z on the desire path - if not, then bai ∈ M and ba ∈ M , hence
U ∪M 6= ∅ - a contradiction.

2) zc ∈ E - otherwise yc ∈ U ⇒ ∀i : aic ∈ U ⇒ a contradiction with ac 6∈ U ∪M
3) zc ∈M
4) ∀i : aiz ∈ E : if not, aic ∈M , and therefore ac ∈M – a contradiction.
5) az ∈ U
We had a cycle abcd... and now we have a cycle azcd... with the same length, but a shorter desire path. �

Theorem 17 (Characterisation of transitive orientability). G is transitively orientable if and only if for
every edge xy, 〈xy〉S is antisymmetric.

Proof. “⇒:” Obviously, there will be no contradiction there.
“⇐:” By Lemma 2, 〈xy〉S are complete for all xy and they are also well-behaved. Then by Lemma 3, we

may connect them somehow to cover the whole graph. �
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